Final

FOCUS REPORT New Chemicals Program

PAF	RT I:	BACK	GROUN	D			W	ritten By:	TH	KP	
FO	CUS DAT	E:	2/2/2006	6		FOCUS CHA	AIR:	G. Hilton			
COI	MPANY:										
CAS	SE NUMB	ER(S):	P06-024	17 throu	gh			and			
PAF	RT II:	SAT R	ESULT	S							
HEA	LTH: 1-2	ECO	тох: 3	OCCUPATIONAL EXPOSURE:	- 1B	CONSUMER EXPOSURE:	3	ENVIRONMEN RELEASES:	TAL	3	
	ITIONAL NFORMAT									2106 FED	
PAF	RT III:	OTHE	R FACT	ORS						1 :	-
a.	PRODU	CTION V	OLUME:		kg/yr					P:	C
b.	PROD V	OL OTHE	ER:							***	-
C.	USE:					_				5	
d.	REGUL	ATORY H	ISTORY:	TR 2N	DRAW! ID DISF	SUSP/PND N - OTHER PO DROP/VOL SNUR		GO VOL TEST FING	•		
e.	TEST D	ATA:									
f.	IMPORT	ED		MANUFACTURED	\checkmark	вотн	[
g.	MSDS:	✓									
h.	CATEGO	RY:		-	C	ATEGORY 2:					
PAR	RT IV:	SUM	MARY O	F SAT ASSES	SMEN	IT					
CAS	SE NUMI	BER: P0	6-0247					*6			
S = vp < bp > log log sorp sub 10% CO2 po time sorp	id with m dispersit < 1.0E-6 (> 500 C (1.0E-8 () Koc > 4.5 fish BCF otion to s mitted te 6 biodegr 2 evolution TW remode for com	ble (P) mm Hg o P) 5 (P) = 0.50 (I ludge = I st data for radation i on test (C oval = 25 plete ulti oils and s	or torr at 2 P) ow to moder aerobic n 30 d via DECD3016 to 50% via mate aero sediments	derate (P) biodegradation we cO2 evolution, th	us, not sible pa n = mor	readily biodegrad	s o	e by the modifie	'	8 5	
						415	1				

HEALTH: Absorption is poor from the skin, moderate from the GI tract, and good from the lung based on analogs;

concern for lung toxicity and irritation to eyes, skin, mucous membranes based on the surfactant

```
properties of the PMN:
 low to moderate concern for toxicity
 ECOTOX: The toxicity profile for
                                       is with ECs in mg/L (ppm), predicted (P), and measured
 (M):
 liquid
 S = dispersible
 aerobic biodegradation was 10% CO2 in 30 d by the Modified Sturm;
 ECOTOX: Predicted (P) and measured (M) toxicity values in mg/L (ppm) are:
 fish 96-h LC50
                  =< 0.200 P
 fish (FHM) 96-h LC50 = 0.560 M S,N
 daphnid 48-h LC50 =< 0.200 P
 daphnid 48-h LC50 = 0.880 M S.N
 green algal 96-h EC50 =< 0.200 P
 green algal 96-h EC50 = 0.050 M S,N
 fish chronic value =< 0.020 P SAR
 fish ChV
               = 0.060 P FHM96/ACR10
 daphnid ChV
                  =< 0.020 P SAR
 daphnid ChV
                   = 0.090 P D48/ACR10
 algal ChV
                 =< 0.020 P SAR
 algal ChV
                 = 0.030 M S,N
 Predictions are based on SARs for
     ; pH7; effective concentrations based on 100% active ingredients and mean measured
 concentrations; hardness <180.0 mg/L as CaCO3; and TOC <2.0 mg/L;
 high concern based on SAR;
 high concern based on test data;
 assessment factor (AsF) = 10.0
 CC for fish
              = 0.006 \, \text{mg/L}
 CC for daphnids
                    = 0.009 \text{ mg/L}
 CC for green algae = 0.003 mg/L
PART V:
             SUMMARY OF EXPOSURE/RELEASE
 Manu:
 Fate:
 SWC: 3254.36 ppb
 DW:LADD: 7.32e-5_mg/kg/d, ADD: 1.83e-4 mg/kg/d, ADR: 0.16 mg/kg/d
 >COC (2 ppb): 9 of
 Fate:
 SWC: 5215.58 ppb
 DW:LADD: 2.20e-4_ma/kg/d, ADD: 5.51e-4 mg/kg/d, ADR: 0.26 mg/kg/d
 >COC (2 ppb): 9 of
```

Fate: LADD: 2.81e-4 mg/kg/d, ADD: 7.02e-4 mg/kg/d

PART VI: FOCUS DECISION AND RATIONALE

DISPOSITION: Cated

Category-5(e) Ban Pend.UF Test

RATIONALE:

P06-0247 will be regulated under TSCA 5(e) Category (Neutral Organics) Ban Pending Up-Front testing under the risk based authority for eco concerns. Potential risks to human health were addressed by negligible inhalation exposures and adequate dermal protection. Potential acute risks to the environment are from releases to water where the 2 ppb COC was exceeded for 9 out of (SWC: 3254.36 ppb), and 9 out of

(SWC: 5215.58 ppb). Eco testing will be the base set, flow through method with

measured concentrations. No fate testing was requested.

PART VII: CCD DISPOSITION / DD

CCD:

STRUCTURI	E ACTIVITY TEAM	REPORT V	er. 04/98		
Case #:	P-06-0247	D	CN:		
SAT Date:	1/27/06	SA	AT Chair:	V. Nabholz	
Submitter:					
Chemical Nam	ne:	<u>-</u>			<u> </u>
					novemb
A					
			_		AL 18
					ujima
CAS RN:		Tra	ade Name:		R CO Non
Structure					Non
					1 *4
Molecular Formul	a:				
Molecular Wt.	v	VT%<500:		/T%<1000:	
MP:	E	BP:	> 500	Eq. Wt:	
H2O Sol (g/L):		Dispers	sible v.p.		< 0.000001
Max. Prod. Volum	ne (kg/yr):		Physical State:		Liqui
USE:					
Corresion control in	n oil and gas wells and oil a	nd das nine lines			
Analogs Amine FGEW =	Ton and gas wells and on a	nd gas pipe lines.			
Related	Case Numbers	Case Role	Related Ca	se Numbers	Case Role
				_	
ener skil vidilika ili kina sisiki.				_	_
Focus Date:	2-2-06	Results: 57_2	St Fro		
			Page of		

CASE NUMBER: P06-0247

RELATED CASES: ANALOGS:

CONCLUSIONS/DISCUSSIONS

TYPE OF CONCERN:

HEALTH

ECOTOX

LEVEL OF CONCERN:

1-2

3

KEYWORDS: LUNG, IRR-E,S,MM, AQUATOX-A,C

SUMMARY OF ASSESSMENT

FATE: liquid with mp < 20 C (P)

S = dispersible (P)

vp < 1.0E-6 mm Hg or torr at 20 C (P)

bp > 500 C (P)

H < 1.0E-8 (P)

log Koc > 4.5 (P)

log fish BCF = 0.50 (P)

sorption to sludge = low to moderate (P)

submitted test data for aerobic biodegradation were:

10% biodegradation in 30 d via CO2 evolution, thus, not readily biodegradable by the modified Sturm CO2 evolution test (OECD301B) POTW removal = 25 to 50% via sorption and possible partial

biodegradation

time for complete ultimate aerobic biodegradation = months sorption to soils and sediments = low to moderate PBT Potential: P2B1T1

*CEB FATE: migration to ground water = moderate to rapid

HEALTH: Absorption is poor from the skin, moderate from the GI tract, and good from the lung based on analogs;

concern for lung toxicity and irritation to eyes, skin, mucous membranes based on the surfactant properties of the PMN;

low to moderate concern for toxicity
*CEB HEALTH: Exposures to humans: inhalation, dermal;

ECOTOX: The toxicity profile for ______ is with ECs in mg/L (ppm), predicted (P), and measured (M):

```
liquid
S = dispersible
aerobic biodegradation was 10% CO2 in 30 d by the Modified Sturm;
ECOTOX: Predicted (P) and measured (M) toxicity values in mg/L
(ppm) are:
fish 96-h LC50
                            0.200 P
                       =<
fish (FHM) 96-h LC50
                       =
                            0.560 M S,N
daphnid 48-h LC50
                            0.200 P
                       =<
daphnid 48-h LC50
                            0.880 M S,N
green algal 96-h EC50
                            0.200 P
                       =<
green algal 96-h EC50
                            0.050 M S,N
                       =
fish chronic value
                            0.020 P SAR
                       =<
                            0.060 P FHM96/ACR10
fish ChV
daphnid ChV
                            0.020 P SAR
                       =<
daphnid ChV
                            0.090 P D48/ACR10
algal ChV
                            0.020 P SAR
                       =<
algal ChV
                            0.030 M S,N
Predictions are based on SARs for
       pH7; effective concentrations based on 100% active
ingredients and mean measured concentrations; hardness <180.0
mg/L as CaCO3; and TOC < 2.0 mg/L;
high concern based on SAR;
high concern based on test data;
assessment factor (AsF) =
                           10.0
CC for fish
                            0.006 mg/L
CC for daphnids
                            0.009 \text{ mg/L}
                        =
CC for green algae
                            0.003 mg/L
                        =
*CEB ECOTOX: All releases to surface waters with CC = 2 ppb.
```

SAT co-chair: Vince Nabholz, 564.8909

PMN:	P	-06-02	247	CAS RN:			
Chemical Name:					Analo	ogs:	
						uction Volum	
Structure:						16 Dec/	997
							•
llse.							
Use: Corrosion control i	in oil and o	gas w	ells and oil and ga	as pipe lines.			<u>, , , , , , , , , , , , , , , , , , , </u>
Use: Corrosion control i Analogs	in oil and o	gas w	ells and oil and ga	as pipe lines.			
Corrosion control i Analogs	in oil and g	gas w	ells and oil and ga				
Corrosio <u>n control i</u>	in oil and g	gas w	ells and oil and ga	Eq Wt: Wt%<500:		Wt%<100	00
Corrosion control i Analogs Formula:	n oil and o	gas we	ells and oil and ga	Eq Wt:	> 500		0.00
Corrosion control i Analogs Anale 7 1	n oil and g	gas we	ells and oil and ga	Eq Wt: Wt%<500:		VP:	
Corrosion control i Analogs Formula: Mol Weight:	n oil and o			Eq Wt: Wt%<500:			
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L):			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L)			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV			Dispersible	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV	Est. Val		Dispersible Phy Meas. Value	Eq Wt: Wt%<500: BP: ysical State:		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV BCF CHEMICAL CLAS	Est. Val	lue	Dispersible Phy Meas. Value	Eq Wt: Wt%<500: BP: ysical State: Comments		VP:	
Corrosion control i Analogs Formula: Mol Weight: MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV	Est. Val		Dispersible Phy Meas. Value	Eq Wt: Wt%<500: BP: ysical State:		VP:	

Leonard Keifer Vince Nabholz Jim Kwiat

Princess Campbell